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Cloud computing offers substantial benefits to its users: the ability to store and access massive 
amounts of data, on-demand delivery of computing services, the capability to widely share 
information, and the scalability of resource usage. Lincoln Laboratory is developing technology 
that will strengthen the security and resilience of cloud computing so that the Department of 
Defense can confidently deploy cloud services for its critical missions. 

Imagine a military commander who urgently needs a specialized computing capability to 
analyze new intelligence, surveillance, and reconnaissance (ISR) data and integrate those  
data with existing ISR information. The commander directs his information technology (IT) 
staff and developers to design this capability. The staff quickly provision computing 
hardware from a Department of Defense (DoD) cloud and compose the software and 
services needed to ingest, enrich,  create, and  share knowledge from the data, while 
ensuring that the resulting capability remains secure and resilient (i.e., able to continue 
operations after a disruption). Within days, the staff has an initial system for analyzing the 
ISR data up and running. In the following weeks, they enhance the system by creating new 
features and adding capacity for even more data. This vision for agile, inexpensive cloud 
computing could revolutionize the way the DoD operates, and Lincoln Laboratory is 
building the next-generation secure cloud computing systems that could enable that vision. 

Marketers have made the term cloud synonymous with ubiquitous, convenient 
computing. Digging below this simplified description, we find that cloud computing is a 
model for deploying software and hardware resources at lower cost and with greater 
flexibility than deploying typical enterprise computing resources. The defining attributes of 
cloud computing include on-demand self-service, broad network access, resource pooling, 
rapid elasticity (i.e., ability to adapt quickly to changing computational demands), and 
measured service (i.e., accounting and billing of resource usage) [1]. In cloud computing, 
computation and software capabilities are outsourced to a provider that delivers services to 
a cloud user (also called a tenant). 

The DoD is looking to the cloud computing model as a means for lowering the costs and 
improving the flexibility of computing systems while delivering more capable services. But, 
the process of moving to the cloud is not without peril. The 2013 Defense Science Board’s 
Report of the Task Force on Cyber Security and Reliability in a Digital Cloud recommended 
that “DoD should pursue private cloud computing to enhance mission capabilities, provided 
that strong security measures are in place” [2]. The study team, including experts from 
Lincoln Laboratory, the DoD, commercial cloud providers (e.g., Google and Amazon), and 
leading universities, found shortcomings in the security and resilience of clouds. The study 
further highlighted the need for research addressing conditions of interest to a warfighter, 
whose computing resources may face an active cyber adversary, intermittent connectivity, 
and physical attacks on computing hardware. 

Today’s cloud providers and the technology that underpins them are focused on the 
availability and scalability of services and not on DoD-specific security needs. Commercial 
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cloud security is typically proprietary and thus opaque to tenants. For example, tenants 
have no visibility into cloud network security or data access. The prevailing cloud 
computing model is based on users trusting their cloud providers; data are stored 
unencrypted inside the cloud and all processing is done on unprotected data. The only 
enforceable guarantees that tenants have are through legal service-level agreements that 
loosely define the security responsibilities of both providers and users. This legal model 
does not provide tenants with timely and controllable mechanisms with which to respond 
when adversaries strike. As the DoD seeks to utilize commercial cloud technology, current 
cloud security will leave the DoD unable to protect their cloud resources from external 
attack, their cloud provider, insiders, or malicious tenants. 

To address these shortcomings in cloud security, Lincoln Laboratory has undertaken the 
Lincoln Laboratory Secure and Resilient Cloud (LLSRC) effort to shore up the technology 
behind the cloud. The LLSRC approach is to (1) define a more accurate threat model for DoD 
cloud computing, (2) research and build technology that addresses that threat model, and (3) 
integrate the technology into a usable, secure, resilient cloud test bed. Underpinning this 
work is the semitrusted cloud threat model, which is built on the assumption that some of the 
cloud infrastructure or resources will be under the control of an adversary, but that there 
remains a portion of the cloud that can be inspected and trusted. 

Our research and prototyping efforts are focused on four key components needed for a 
secure and resilient cloud: communication, storage, processing, and a high-assurance 
architecture that holds them together. In each area, our goal is to achieve security and 
resilience in the semitrusted cloud threat model. The vision for this technology is to create an 
ecosystem of services and capabilities that allows the DoD to build secure, resilient cloud 
mission applications. We are developing services and interfaces that can be recomposed to meet 
mission needs. Finally, we are combining these prototypes and services in a cloud test bed that 
reduces the risks for the DoD’s acquisition of secure, resilient cloud technology by providing 
proofs of concept, technology maturity, integration demonstrations, and security evaluations. 

 
Cloud: A Primer 
Cloud computing changes how information services can be created and implemented. Before 
the cloud era, providing a new computing service (e.g., a large website or a file server) 
meant substantial capital expenses for data center space, network connectivity, and 
servers. After the capital investment, companies needed large teams of IT personnel and 
developers to manually build, install, configure, and maintain the supporting 
infrastructure. It took months for the teams to field the new service and considerable 
expense to operate and maintain it. In the cloud model, computing resources can be created 
on demand and composed into applications quickly. 

The National Institute of Standards and Technology (NIST) defines the cloud as a 
“model for enabling ubiquitous, convenient, on-demand network access to a shared pool of 
configurable computing resources (e.g., networks, servers, storage, applications, and 
services) that can be rapidly provisioned and released with minimal management effort or 
service provider interaction” [1]. NIST’s five essential characteristics of a cloud service are 
contrasted with those from the “old way” of enterprise computing in Table 1. 
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Table 1. Cloud versus Enterprise Computing Characteristics 

Cloud Computing Enterprise Computing 

On-demand self-service User request and long implementation to provide services 

Broad network access Limited to local area/company networks only 

Resource pooling Dedicated resources; expensive resilient hardware 

Rapid elasticity Fixed, over-provisioned capacity; expensive to scale up/down 

Measured service Poor metrics; unmeasurable guarantees 
 
 
Cloud offerings fit into three different service models—infrastructure as a service (IaaS), 

platform as a service (PaaS), and software as a service (SaaS)—that target system 
administrators, developers, and end-users respectively (see Table 2). NIST identifies four 
environments in which cloud services exist: public, community, private, and hybrid. Public 
clouds allow anyone to use them. Community clouds may share tenants across a particular 
community of users (e.g., a cloud managed by the Defense Information Systems Agency 
[DISA]). Private clouds are generally limited within an organization (and their broad 
network access may be more limited). Hybrid clouds allow the mixing of private and/or 
community clouds with public ones. Some organizations have a private cloud for general 
use but may need to scale to broader cloud services for specific needs during certain periods.  

 
Table 2. Cloud Service Models 

Service 
Model What’s Provided Flexibility Examples 

IaaS Compute, storage, and 
network High 

Amazon Elastic Compute Cloud (EC2), DISA 
milCloud, Google Compute Engine, Microsoft 
Azure 

PaaS 
Application program 
interfaces (API) and 
services 

Medium Amazon Elastic MapReduce, MathWorks 
Cloud, Red Hat OpenShift 

SaaS Full-fledged applications Low Google gMail, Microsoft Office365, Facebook 

 
When building cloud applications for these service models and environments, developers 

and designers must consider distributed systems issues, such as consistency, availability, 
and network failure. Similarly, cloud developers and system administrators need to resolve 
how to automate the deployment and monitor the availability of an elastic distributed 
system. These issues represent a considerable departure from the vast majority of 
enterprise computing patterns. Indeed, many DoD cloud initiatives thus far have not 
broken the mold of enterprising computing; they are simply performing virtualization at a 
distant data center. Solving the challenges presented by distributed systems will benefit 
the future of DoD software by providing increased resiliency to the end-users’ missions. 
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Semitrusted Cloud Threat Model 
Cloud services are attractive options for computing. They are easy to create, are usually 
straightforward to use, and offer flexibility and low cost; however, they carry significant 
security risks. Consider the example of Code Spaces [3]. In June 2014, attackers stole the 
credentials to the company’s Amazon Web Services cloud account and proceeded to destroy 
all Code Spaces’ virtual machines and customer data. Unable to recover, the company 
ceased operations shortly thereafter.  

The first steps toward combating threats to the cloud are to understand and to codify 
assumptions about attacks and risk by examining the prevailing threat model. The 
dominant commercial cloud threat model is based on trusting the cloud providers and their 
system administrators. The layered service model of infrastructure, platform, and software 
as services allows a buyer of cloud services to abstract away the details of the lower layers. 
This model often results in security that is opaque to the end-user. For a number of 
reasons, security opacity is beneficial to providers. First, the providers’ infrastructure and 
associated  mechanisms for the security of their offerings are their critical intellectual 
property that the providers are not incentivized to share. Second, by not specifying the 
details of their security implementations, providers are free to change the details as needed 
without violating any service-level agreement. Last, providers can espouse a shared 
security responsibility model in which attacks and vulnerabilities occurring at or below the 
level of the providers’ services  are the providers’ responsibility, and attacks and 
vulnerabilities above the providers’ services are the responsibility of the cloud users. Rarely 
are sophisticated real-world attacks so cleanly separated across the layers of a computing 
stack; therefore, cloud providers can indemnify themselves of liability and blame the users 
for any security breaches that arise. 

A further problem with the prevailing security model for clouds is that of mismatched 
priorities and control. Since cloud service providers require their users to outsource security 
to the providers, users must also give up control of how to respond to an attack, thereby 
allowing providers to both prioritize and formulate the responses. With only vague security 
service-level agreements in place as leverage, cloud users are at the providers’ mercy when 
an attack happens. 

An alternate threat model is one in which cloud providers are not trusted at all because 
they are a third party to users’ resources. This conservative approach is taken by some 
users in the DoD who are engaged in sensitive missions and also by many academic 
researchers , especially those working in cryptography. The assumption that the cloud is 
completely insecure leads to the use of very inflexible solutions (e.g., encrypting data and 
not processing them at all in the cloud) or extremely expensive operations (e.g., using fully 
homomorphic encryption that performs computation without decrypting data [4]). As a 
result of confining technology to this threat model, many of the benefits of cloud computing 
are lost. Furthermore, a conservative user may avoid using the cloud at all and fall back to 
single-tenant enterprise computing. 

We choose neither of these extremes for the LLSRC threat model. Instead, we use a trust 
model that we call the semitrusted cloud threat model (see Figure 1). In the semitrusted 
model, we assume that some fraction of the cloud resources is under the control of 
adversaries. We neither distinguish between external or insider attackers nor assume that 
we can always precisely identify which nodes are corrupted and which are unaffected. 
Applying this threat model, we expect and design for cloud compromise, but we assume that 
some trustworthy base of resources remains on which we can build secure and resilient 
systems. 



LLSRC 5 

 
 

 

FIGURE 1. This comparison of cloud threat models shows how the semitrusted threat model Lincoln 
Laboratory advocates accepts a reasonable amount of risk to maintain the cloud computing benefits of 
low computational costs and flexible, scalable services.   

 
 

Secure and Resilient Cloud Architecture 
Building a secure and resilient cloud system for the DoD necessitates some changes and 
additions to the standard cloud architecture. The LLSRC architecture stack (Figure 2) 
begins at the bottom with the same commodity, low-cost hardware present in today’s clouds 
but with the addition a hardware root of trust, (i.e., a specialized cryptographic coprocessor, 
that is trusted by the operating system). Atop that layer is a high-assurance trusted 
computing architecture that allows us to bootstrap (initiate) trusted cryptographic keys 
that will underpin higher layers. Because this layer also supports bidirectional control and 
visibility of the cloud infrastructure below, cloud tenants can obtain actionable situational 
awareness of the resources they are using. Above that trusted architecture, we build 
systems that enable the three core capabilities needed for cloud computing: communication, 
storage, and processing. We aim to develop systems that maintain security and resilience in 
the face of adversaries who control some of the cloud resources. 

The LLSRC architecture fits both beneath and alongside existing insecure cloud 
software. As a result, we need a strategy for integrating LLSRC technology with the cloud 
services and applications that need to be secured. The LLSRC integration strategy is to 
utilize a suite of services and tools at various levels of the cloud stack. This strategy 
provides a tiered approach to integration that starts with limited-invasiveness, compatible 
solutions that can be deployed transparently to the applications. The next integration point 
is the security application program interfaces (API) and services that developers can 
compose. The final integration point consists of full replacements for end-user software. 
These integrations plug in roughly at the infrastructure, platform, and software layers to 
afford cloud tenants the maximum flexibility to design and compose appropriate solutions 
for their missions’ needs. 
 
 

Conservative 
Approach
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Cloud ApproachSemi-Trusted 

Cloud Model

Trust me,
it’s secure

Provider
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Tenant 2 
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FIGURE 2. At the base of the stack for the Lincoln Laboratory Secure and Resilient Cloud (LLSRC) are 
commercially available hardware and a root of trust. The high-assurance architecture allows the three 
core capabilities to take advantage of its security measures. The LLSRC application interfaces and the 
applications at the higher layers allow developers to design software for specific missions, such as 
intelligence, surveillance, and reconnaissance (ISR) or command and control (C2). 
 
High-Assurance Architecture 
Today’s cloud service providers do not furnish the building blocks necessary to establish a 
trusted environment for hosting mission-critical applications and data. Tenants have 
limited ability to verify the underlying platform when they deploy their software and data 
to the cloud provider and to ensure that the platform remains in a good state for the 
duration of their computation. Additionally, current practices restrict tenants’ ability to 
establish unique, unforgeable identities for individual nodes that are tied to a hardware 
root of trust. Often, identity is based solely on a software-based cryptographic solution or 
unverified trust in the provider. What is needed are mechanisms to establish trusted cloud 
identities, rooted in hardware, and to maintain appropriate situational awareness and 
control over cloud nodes. 

To establish a cryptographic node identity with a hardware root of trust, nodes validate 
their environment and, in turn, are validated by the environment before being issued a 
long-term identity. The hardware that is often used to establish a trusted environment in 
commodity systems is the Trusted Platform Module (TPM), a small cryptographic processor 
that provides a hardware root of trust. Figure 3 shows the process by which a system with a 
TPM will boot, known as secure boot. Secure boot ensures that no files have been modified 
and halts the system when any unexpected changes are detected. The basic input/output 
system (BIOS) starts the process by measuring (or validating) the firmware within the 
system. The firmware then validates the boot loader, which in turn validates the operating 
system (OS). The OS then monitors the applications running on the system. 
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FIGURE 3. A trusted computing architecture validates the current environment during system boot to 
allow the system to generate proofs that show the current integrity state of the system. The validation is 
enabled by the Trusted Platform Module (TPM) and sequences through all layers of the stack. 

 
 
During normal operation, these collected measurements can be provided to remote 

systems as a means of proving, or attesting, the system’s integrity state, a process known as 
integrity measurement. The TPM forms the hardware root of trust for secure boot and 
integrity measurement. This root of trust is expected to function correctly, and from this 
assumption, we can validate the entire set of applications running on the system, using the 
chained validation described in the preceding paragraph and Figure 3. These techniques 
ensure that any deviation from a known-good state can be detected so that appropriate 
responses can then be taken. This chained validation approach increases the difficulty for 
an adversary who is attempting to compromise a system while avoiding detection. 

The first challenge to extending trusted computing to the cloud is virtualization. Because 
virtual machines are by definition separated from and unaware of the underlying hardware 
on which they run, we need a way to tie the virtual environment to one rooted in hardware. 
The software Virtual Trusted Platform Module (vTPM) solves this problem by linking its 
attestations of the virtual environment to that of the underlying hardware (e.g., the 
hardware of the virtual machine monitor, or hypervisor) [5]. 

The second challenge to trusted computing is effectively scaling the techniques to the 
thousands of nodes in the cloud. The sheer number of machines and limitations of the 
performance of hardware TPMs (e.g., a single digital signature, which is a fundamental 
building block in trusted computing, can take ∼1 second to produce) make it infeasible to 
have each virtual machine attest to all other hosts with which it communicates directly. We 
propose using a cloud verifier to alleviate this problem by centralizing integrity 
measurement to a dedicated software service that verifies all the nodes belonging to a 
particular entity (tenant or provider) [6]. This integrity measurement asynchronously 
occurs separately from the communication channel and has no impact on the performance 
of the application’s communication. While centralizing the integrity measurement reduces 
the timeliness of detecting violations of a system’s integrity, the number of systems that 
can be attested is more scalable. 

Using hardware-rooted node identities and the measurements collected by their 
individual cloud verifiers, tenants can now create and maintain their own individualized 
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trusted membership lists. The long-term identities (i.e., public/private key pairs) in the 
trusted membership list bootstrap both long-term identity and ephemeral keys (temporary 
keys generated for each key establishment process) for higher-level services. Changes to a 
trusted membership list inform higher-level services of the trust level of each node in 
tenants’ environments. The trusted membership list forms the foundation and interface 
that enables secure communication, information flow tracking, and storage. 

To demonstrate this, we created Keylime, a collection of services and an API that allows 
applications on a cloud node to bootstrap trust in the manner described. Keylime provides 
the cloud verifier (CV) service and the cloud node service that runs on each compute node. 
The ability to maintain a trusted list of cloud compute nodes depends on Keylime's ability 
to continuously verify TPM quotes. To test how scalable our library was, we created an 
automated test platform to create new virtual “compute nodes” and verify their quotes. 
Figure 4 shows that we were able to reach a rate of 2500 verifications per second.  This 
demonstrates that our system can scale to handle thousands of nodes with low latency 
detection of integrity violations. 

 
Figure 4. Measuring the scalability of the Keylime TPM verification library 
 

Secure Communication 
Cloud providers, malicious insiders, or other tenants mounting a side-channel attack1 may 
eavesdrop on cloud networks. To protect data in transit, we can rely on well-known 
techniques, such as Internet protocol security (IPsec) or transport layer security (TLS), 
which can provide both confidentiality and integrity of network traffic. In LLSRC, we use 
the long-term identity keys provided by the architecture to bootstrap the creation of 
ephemeral cryptographic keys for use with IPsec. By using this technique, we can secure 
communications without presharing keys to all nodes, and we do not need each node to be 
provisioned with the same keys. Each system has an agent that monitors changes to the 

                                                
1 A side-channel attack is one that exploits nontextual information, such as timing information or 
power consumption statistics, generated by an encryption device).  
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trusted measurement list and can terminate IPsec tunnels when nodes are removed. This 
solution can be preconfigured as part of the cloud offering and transparently protects all 
inter-tenant cloud communications to provide an easy mechanism by which all point-to-
point cloud network traffic can be encrypted. However, one limitation of this approach is 
the need for point-to-multipoint traffic. 

Brokered publish/subscribe services offer a way to broadcast messages to multiple nodes. 
When nodes first join the service, they specify to a broker a list of topics in which they are 
interested. When nodes send broadcast messages related to those topics to the broker, the 
broker sends the messages to all the nodes that have subscribed to that topic. To enhance 
scalability and elasticity, tenants can leverage a broker operated by the cloud provider to 
multiplex multiple tenants’ messages across the cloud efficiently [7]. While this practice has 
many advantages, the broker presents adversaries or malicious cloud insiders with an easy 
target to attack. 

To address the insecurity of brokered cloud messaging systems, we are building a 
cryptographic overlay that protects data passing over an untrusted broker. The system 
works by running a proxy on each cloud node that either publishes or receives messages 
from the cloud broker. These proxies use dynamic group keying to establish and distribute 
a cryptographic key that tenants can control for each topic [8]. The proxies then encrypt all 
data that transit the broker and subsequently remove any encryption before delivering the 
data to the destination application. The trusted membership list provides the keys needed 
to securely distribute the topic keys and the cues for when to rekey as the membership list 
changes. This solution is transparent to existing cloud applications (requiring only a 
configuration change to redirect the application to the proxy rather than to the real broker), 
and it maintains the elasticity and scalability of the cloud broker. 

 
Secure Cloud Storage 
The ability to store and access data securely is core to developing a protected cloud 
infrastructure. Threats to data storage security abound in the cloud. Examples include 
insiders maliciously accessing physical disks, malware modifying critical files, providers 
improperly sanitizing reused media, and services providing insufficient access control. 
Again, we turn to cryptography and key management to simplify the trust assumptions we 
must make to ensure critical data are protected. 

The simplest storage media to protect in the cloud is the local storage attached directly 
to a cloud compute node. While commercial products from HyTrust and SafeNet exist to 
transparently encrypt these volumes, these products fall short because they rely on 
software-based or password-based trust with no linkage to a hardware root of trust or to the 
integrity state of the system. Using the LLSRC high-assurance architecture, we can 
mitigate this shortcoming. As with the communication component of cloud computing, long-
term identity keys can be used to unlock cryptographic keys that protect local storage, and 
agents monitoring the tenant’s trusted membership list can revoke access to encrypted 
volumes as the cloud node integrity state changes. By leveraging hardware acceleration and 
the bootstrapping capabilities of the trusted membership list, this solution can be deployed 
transparently to applications with minimal performance overhead. 

Often, local cloud node storage is not used to store persistent state because nodes may 
come and go as the storage load varies. When persistent state is not stored in a cloud node, 
that state must be stored elsewhere and is typically shared with other cloud nodes. Object 
storage systems (e.g., Amazon Simple Storage Service (S3), OpenStack Swift) or distributed 
file systems (e.g., Lustre, Ceph) often fill this need. These systems typically rely on access 
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control lists that are enforced by the system. For example, file systems compliant with 
POSIX (a set of standards known as Portable Operating System Interface for UNIX) will 
offer owner, group, and other read-and-write permissions. 

To move this reference monitor model of access control to one based in cryptography, we 
need both dynamic group keying and long-term identity keys provided by the architecture. 
Lincoln Laboratory has developed a prototype system that encrypts data in an object 
storage system and mediates access to shared resources using key management [9]. Using a 
method similar to the protection of topic keys with a secure publish/subscribe proxy, our 
system creates a randomly generated key, called the content key, for each object (i.e., piece 
of data) in the system and encrypts the object using the content key. The system then 
encrypts the content key using the long-term identity key of each entity that has 
permission to read the object. These encrypted keys, or key wraps, along with the encrypted 
object, are stored in the object storage system. The owner of the object can add permissions 
later and can revoke access by re-encrypting the object under a new key or encrypting 
under a new key only when new data are written to the object. An asynchronous agent 
running in the cloud manages when permissions should be updated based on changes to the 
membership list. 

The final and most complex storage application to secure is that of databases supporting 
complex queries. Databases are critical to cloud computing because they allow applications 
to efficiently access small portions of large datasets. The standard sets of cryptographic 
algorithms (e.g., block ciphers, cryptographic hash functions, and public key cryptography) 
are insufficient for use with databases because these algorithms do not allow search 
operations on ciphertext. We need new cryptographic techniques, such as deterministic, 
order-preserving, and searchable encryption [10–12]. These cryptographic techniques have 
proven to be both secure and practical for relational or SQL-style2 databases. These 
protections can be deployed with approximately a tenfold decrease in processing overhead 
compared to the overhead involved in plaintext operations for a wide variety of advanced 
queries, including substring matching and ranges [13, 14]. 

Many cloud applications are moving to a schema and storage pattern that relaxes some 
of the constraints of SQL to create massively scalable databases. To address this shift, we 
have developed the Computing on Masked Data (CMD) toolbox, which employs the 
aforementioned encryption primitives to provide a high-performance framework for 
securing data in NoSQL databases like Apache Accumulo [15, 16]. Specifically, to allow 
users to securely mask data stored in a database, the CMD toolbox makes use of encryption 
techniques such as semantically secure encryption (RND, which only supports data 
retrieval), deterministic encryption (DET, which supports database matching queries), and 
order-preserving encryption (OPE, which supports database range and match operations). 

When data are inserted into the cloud database, they are first converted to sparse 
representations known as associative arrays (sparse matrices with text-labeled rows, 
columns, and values). Prior to inserting data into the cloud, users select the appropriate 
level of masking (i.e., encryption with a secret key) that they will apply to support the 
security and functionality goals of their application. 

To retrieve the masked data, users submit a masked query (with the same key used 
when they inserted data) or an analytic (such as correlation or thresholding). To view the 
results, users unmask their data by using the same key they used to mask the data. The 

                                                
2 SQL, short for Structured Query Language, is a widely used programing language for managing 
databases. 
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CMD prototype, which has been applied to health-care data, network logs, and social media 
datasets, adds no more than twice the relative computational overhead. For example, 
Figure 5 describes the computational time taken to perform a correlation on masked data 
(DET and OPE) and plaintext data (CLR). We found the time taken to perform masked 
correlation (represented by the red OPE line and blue DET line) is within a factor or two of 
performing the correlation on plaintext data (represented by the black CLR line). 

 
 
 

 
To address the integrity of data stored in cloud databases, we are developing a system to 

automatically and transparently append digital signatures to all data items in the NoSQL 
Accumulo database. In addition to developing techniques for protecting data integrity, we 
are developing a system that uses tools like Merkle hash trees to safeguard the soundness 
of results returned by the database [17, 18]. This system will ensure that a database cannot 
suppress or falsify results without detection. Both these systems are implemented in the 
software the client uses to access the database. If database clients reside in other cloud 
nodes (that are powering other applications), we can leverage the identity keys from the 
trusted membership list to authenticate nodes and distribute keys for signing and verifying 
data in the database. 

 
Secure Processing 
The most challenging problem in cloud security is the protection of data while they are 
being processed. Since it may often be desirable for users to perform computations, such as 
statistical analyses, over data stored in the cloud, it is important for cloud providers to 
ensure that the data are secured throughout the computation. However, most clouds today 
only allow processing over unencrypted data to give the cloud the access necessary to 
perform the computation. This approach requires data owners to give up control over their 
data and trust the cloud to do the right thing. If even a single one of a tenant’s cloud nodes 
is compromised by an adversary, either through malware or the presence of a malicious 
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insider, then both the confidentiality of the data and the integrity of the computed results 
may be compromised. Although the trusted computing techniques we have described can 
detect when the system reaches an unknown or malicious state, these techniques still leave 
the data vulnerable as they are being processed and stored in memory on a cloud system. 

Consider the proposed semitrusted cloud threat model presented earlier. In this model, 
we explicitly assumed that some fraction of cloud machines is under adversarial control at 
any given time. Under this threat model, we cannot rely on trusting the entire cloud, and 
additional protections are necessary to keep data confidential during processing and to 
ensure correctness of computation results. A number of cryptographic techniques, such as 
homomorphic encryption, verifiable computation, and multiparty computation (see [19] for 
a brief survey), have been proposed by the academic community to protect data during 
processing in a semitrusted computing environment; however, more research is necessary 
for developers to understand the applicability and practicality of these techniques in a cloud 
setting. 

To achieve secure processing on a semitrusted cloud, we are investigating the feasibility 
of secure multiparty computation (MPC) in the cloud. Secure MPC allows multiple parties 
to work together to compute a joint function on their private data without revealing those 
data to each other or any external parties and while ensuring that correct results are 
obtained even if a small number of the parties misbehave. The MPC arrangement is an 
effective substitute for a scenario in which a perfectly trusted third party would be needed 
(Figure 6). Distributed computation like MPC arises quite naturally in a cloud setting 
where data may be distributed over multiple cloud nodes or may belong to different cloud 
tenants. Using MPC, cloud tenants can perform computation over distributed sensitive data 
while protecting the confidentiality and integrity of the input data and the results, even if 
some fraction of the machines involved in the computation is corrupted. In fact, this 
security guarantee does not even require that the identities of corrupted parties be known. 

 
 

  
 

FIGURE 6. Multiparty computation (MPC) on the right emulates a trusted third-party scenario (on left) to 
achieve comparable security. 

 
 
The academic cryptography community originally developed secure MPC in the mid-

1980s [20–23]. However, for more than 20 years, the computing community considered 
MPC protocols purely theoretical novelties and explored few, if any, real-world applications 
of the protocols. The perception that MPC is impracticable has been shattered in the past 
few years as multiple efficient protocols have been implemented and used for real-world 
applications such as secure auctions [24] and private statistical analysis [25]. These 

MPC 
Protocol 



LLSRC 13 

demonstrated uses of MPC protocols have confirmed that MPC is nearing readiness for 
real-world applications; however, much work remains before these protocols can be applied 
in a cloud setting. Specifically, it is necessary to build protocols that can perform efficiently 
for computations that are distributed over a large number of cloud nodes and that are 
optimized for the computations typically performed in cloud settings. 

Lincoln Laboratory is currently addressing both of these requirements for cloud MPC. 
First, we are investigating ways to decrease the number of nodes that must communicate to 
each other in an MPC protocol. Reducing this communication locality is critical in a cloud 
network because the reduction lowers the total communication bandwidth necessary for 
MPC to run with many cloud nodes. Additionally, we are identifying and building MPC 
protocols for cloud-specific computations, such as shared cyber situational awareness and 
graph anomaly detection [26].  

To better understand the usability and utility of MPC for such applications, we have 
developed an initial prototype of MPC for graph anomaly detection. Figure 7 shows the 
performance of both the unoptimized and optimized versions of our prototype.  Our results 
demonstrate that several orders of magnitude improvements can be achieved by applying 
MPC-aware optimizations that transform existing algorithms into appropriate form for 
secure computation.  Efficient MPC for such computations will demonstrate its applicability 
in a cloud environment and will open the path to adding strong security to cloud processing. 

 

 
Figure 7:  Running times of MPC for graph anomaly detection.  The blue line represents an 

unoptimized initial prototype directly translating the algorithm into its MPC implementation.  
Whereas, the red line represents an MPC implementation of the same protocol using several MPC-
specific optimizations (e.g., fixed-point arithmetic, sparse matrices, etc.) to significantly improve 
performance. 

 
 

Achieving the LLSRC Vision 
Developing the architecture and components discussed in this article represents a broad 
and sizable research agenda. Lincoln Laboratory is working on specific research and 
development (R&D) challenges within this space; however, we do not expect to solve all of 
them. We are leveraging promising R&D technology coming from academia, commercial 
companies, and other government labs and agencies. We are combining both our own 
technologies and those from other sources into an integration test bed. 

Using the test bed as a platform for technology demonstration and evaluation, we hope 
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to evangelize the semitrusted cloud security model. By showing that technology can achieve 
stronger security guarantees than those achievable with the current trust models in which 
trust is full, unverified, and absolute, we may drive the adoption of technology that employs 
the semitrusted threat model, and we may influence changes in commercial offerings. 
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